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with these values, because they were derived from
prisms of orientations which involve all the four con-
stants, but without taking such a fact into account.

It may be noted that the stress-optical constants for
ammonjum alum are the largest known of all cubic
crystals so far studied.

Four independent constants are required for de-
scribing the photo-elastic behaviour in class 7,-2/m 3,
because the cube axes are only digonal and not tetra-
gonal. It can now be stated as a general rule applicable
to all cubic crystals, that pressure along any axis of
trigonal or tetragonal symmetry makes the crystal
optically uniaxial, whereas pressure along any digonal
~ axis, or in a general direction, makes the crystal bi-
axial.
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Note on the Bhagavantam-Suryanarayana Method of Enumerating the
Physical Constants of Crystals

By H. A. Jamn*
Department of Mathematical Physics, The University, Birmingham, England

(Received 10 August 1948 and in revised form 5 October 1948)

A method alternative to that of Bhagavantam and Suryanarayana is given for enumerating, by
group theory, the number of independent constants for any physical property of crystals in the
32 classes; the method consists of finding first the explicit form of the representation in question for
the full group of all rotations and reflexions and then obtaining the form for the individual crystal

classes by specialization.

In this journal Bhagavantam & Suryanarayana
(1949) have described a group-theoretical method of
determining the number of independent constants
describing various physical properties of crystals in
each of the 32 crystal classes, their method being a
variant of a method developed by the present author
(Jahn, 1937) in a paper on the enumeration of the
elastic constants of crystals. It is the purpose of this
note to show that the results of Bhagavantam &
Suryanarayana may be obtained in a different manner
which adheres more closely to the original method of
the writer.

Bhagavantam & Suryanarayana consider a number
of different types of physical properties (relations
between tensors) for which they list the character of the
appropriate representation. It may be verified that the
representation in each case is expressible in terms of

* Now at University College, Southampton.

that of a polar vector as shown in the accompanying
Table 1.1

In Table 1, V denotes the representation of a polar
vector and the notation of Tisza (1933) is used for the
symmetrical product, [V?], of V with itself and higher

T Notation for irreducible representations. In this paper, the
standard notation used in molecular spectroscopy for the
irreducible representations of the symmetry groups is adhered
to: thus 4 or B denote always one-dimensional representations,
E two-dimensional, F three-dimensional; different repre-
sentations being distinguished by different suffixes. The
(2L + 1)-dimensional representation of the group (R) of all
rotations is denoted by D;. g and u distinguish representations
which are even or odd with respect to inversion, whilst a single
or a double prime (’, ”) is used to distinguish representations
which are even or odd with respect to a plane of symmetry.
For a detailed account of this notation, which goes back to
Tisza (1933), and for a full account of the algebra of irreducible
representations, the reader is referred to the book by Herzberg
(1945).



H. A, JAHN

symmetrical products, e.g. the symmetrical cube [V3].
€ denotes the representation of a pseudo scalar: e= —1
if the symmetry operation involves an inversion,
€= +1 otherwise.

The number of independent constants describing
each property is then given by the number of times the
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the extension of this to the symmetrical cube, viz.
[(ED)P1=Z[D}]+ % X DJD{1+X X XD Dy D,
a a a b*a a<b<c
which may be proved in the same way, using Tisza’s
expressions for the characters. (It is easy to verify that
[D3]=Dy+ Dy+ D3+ Dy+ Dy.)

Table 1. Enumeration of physical constants for isotropic solids

No. Representation R, R, ‘R, Physical property
1 1 Dg 1 1
2 14 Dy 0 0 pyro-electricity
3, 3 (a) [V?] D§+ D§ 1 1 thermal expansion
4,5 V2 D4+ DY+ D§ 1 1
6 Vive 2D% + Dy + D¥ 0 0 piezo-electricity
7 ps D¢+ 3Dy +2D% + D¢ 0 1
8 (a) [[V21%] 2D§+2D%+ Dj 2 2 elasticity
8 (V22 2D§+ D¢+ 3D§+ D§ + Dg 2 2 photo-elasticity
9 V2 [V?] 2Dg+ 3D +4D§ +2D8 + Df 2 2
10 Ve 3D3 +6D¢ + 6D% + 3D§ + DY 3 3
11 v [[V2]2] 4DY +2D¢ + 3D¥ + Dy + D¢ 0 0
12 (V23] 3D§+3D§+ D§ +2D5+ Df 3 3 2nd order elasticity
13 [V2] [ V2]2] 4D§+2D9 +TD3 +3D§ + 4DY + DE + D ¢ 4
E € Dy ) 0 1 enantiomorphism
] e[V Dy + Dy 0 1 optical activity
Table 2. Enumeration of physical constants for crystals of cubic symmetry
No Representation T, 0 as T',; except as below 30 28 29 31 32
T, T T¢ O O
1 1 A4, 1 1 1 1 1
2 14 F, F, 0 0 0 0 0
3,8(a) [V A, +E+F, 1 1 1 1 1.
4,5 V2 A +E+F +F, 1 1 1 1 1
6 V[V A,+E+2F,+3F, A,+E+3F,+2F, 1 1 0 o0 o
7 Vs Ay + Ay + 2 + 3F, + 4F, A, + A, +2E +4F, + 3F, 1 2 o0 1 0
8(a) [[V2Y] 34,4+ 3E+ F,+3F, 3 3 3 3 3
8§ - [V 34,+A,+4E+ 3F, 1.5F, 3 4 4 3 3
9 va[ve] 34,+24,+5E+6F,+1F, 3 5 5 3 3
10 Vs 44,4 34,+TE + 10F,+ 10F, 4 7T 7T 4 4
11 v [[V22] 34,+ A, +4E +1F, + 10F, A, +3A4,+4E+10F,+1F, 3 4 0 1 0
12 V2P 64,424, +6E +4F, +8F, 6 8 8 6 6
13 [va10va2 9A4,+44,+13E+12F, +17F, 9 13 13 9 9
E € . A, 4, 0 1 0 1 0
0 e[V?] A, +E+F, A, +E+F, 0 1 o0 1 0

identical representation occurs in the reduced form of
the appropriate representation, as is shown in Table 1
for the group of all rotations and reflexions RZ, (iso-
tropic solid). Bhagavantam & Suryanarayana evaluate
this number by a character calculation which for com-
plicated groups is lengthy. The reduced form of the
representation, however, may be derived-in each case
directly and relatively simply using the methods of
Tisza and the present writer. Thus the derivation of the
results contained in Table 1 required, in addition to the
formula already given (Jahn, 1937) for the symmetrical
product of a reducible representation, viz.

[(ED)1=Z[DF]+% Zb]Dan,

Since each of the 32 crystallographic groups is a sub-
group of RZ , the number of independent constants can
be determined from Table 1 when we know the reduced
form of the representations D%, D% for the group in
question. These have been listed by the present writer
(Jahn, 1938, Table 1) for the group 7'; and from these it
is easy to derive the results for all the groups of the cubic
system as shown in Table 2.

As shown in Table 2, the results for the group O are
the same as for the group 7', except for the representa-
tions containing odd powers of V or ¢, for which we must
interchange A, with 4, (and F, with F,). The results
for T are obtained from 7T'; by identifying 4, and 4,.
The number of constants for 7% and O¢is the same as for
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T and O except when the representation contains odd  we obtain the results from C,, by putting 4,=4,=4-
powers of ¥ or ¢, in which case there are no constants. For C% the results follow from D% when we put

For the remaining crystallographic groups it is eon- A —A —A'- A"=A"=A4"
venient to consider first the axial groups C,,, D% , D, . S )
The reduced forms of the representations for these From the results contained in Table 3 we can read off

groups are contained in Table 3 and they may be de- the nun}ber qf constants. er the 25 cry§taﬂographic
rived from Table 1, using the following reduction of ~&roups listed in Table 4, using the following results of

% , DY, for the sub-groups in question: Tisza:
: (1) For
(4
Coot DE:{A1}+E1+E2+...+EL for L{(Z:;}, Coppand D, By=E,=E;=...=Ey=4,+4,,
R ie. By, E,, B4,
e [42 even Cyp and Dy: Ey=Ey= =Ey=A,+4
Dy = A +E,+Ey,+...+ E for L ad |’ 3v aNd Dy fig=tig= ce=Liyg=4;+4,,
1 0 ie. By, By —A4,,
AN oo o B even|  C,,and D,: E,= =E,=4,+4
n.pe =71 E . +E" ... ”Lf L{ . 4 4.4y ()} 1 2
Do D {A2}+El+ 2 Ha- +{Ei} " oad’ ie. E, SA,,
Y 74 D E} even Ceo and Dy: Eg= we=Ey=A4,+4,,
DL“{A;}+E1+E2+E3“'+{E'L} for L[od_d]' ie. E, A,
A even (2) For C,, A;=A,=A, so that, for
Dy : Djort= 1}+E +E,+...+ E;, for L{ }
©* 7L {A2 1T L odd C;: B, By, Eg>24,

This leads to the same results for D,, as for C,, except ) Cy: By, By —24,
where the representation contains odd powers of ¥ ore, Cy: By 24,
in which case 4, and 4, must be interchanged. For C, Ce: Eg —>2A4.

Table 3. Reduction of representations for the full axial groups

No. Representation {g‘;ﬁ” Dy, as C, except as below
" .
A
, 1 1
1 { y
4,+E, - 4;+E,
2 v 4§+ .
24, +E,+E,
3@ DM v
L - {2A1+A,+2E,+E,,
’ : 24+ AL+ 2B + B
6 - 34, + A, +4F, + 2B, + E, A, +34,+4E, + 2E, + E,
Ve A{+3A43+4E{+2E; + E}
. - 44, +34,+ 6E,+3E, + E, 34,4+ 44,4 6E, +3E, + E,
347+ 442+ 6E; + 3B, + B}
54,+3E,+3E, + Ey+ E,
8(a) V] {5A;+3E;'+3E;+Eg+E;
o 64, +24,+ 6E, +5E, + 2B, + E,
8 v 64} +24, +6E! + 5E, + 2B+ E}
S T4, +54,+ 10E, + 1E, + 3B, + E,
9 v 4] +54;+10E! +1E; + 3B + B}
o e 104, + 94, + 16E, + 10E, + 48, + E,

104{+94;,+ 16E] + 10E; + 4B + E,

8A4,+34,+11E,+1E,+5E,+2E, + E; 34,+84,+11E,+ 1B, 4 5E,4+ 2E,+ E;
3A!+8AY+11E; +TEf + 5B} + 2B/ + E} :

9A,+ A, + 1B, + TE,+ 4B, + 3E,+ Es + B,

11 viveE {

12 (v Y, ” , . ’ o T
9A{+ A3+ T1E{+TE;+ 4B+ 3E, + Eg + Ej
. 164,+6A4,+18E,+ 16E,+ 9E,+ 6E,+ 2E;+ E
13 (VA IIV?]A] ; 5 ‘,, OB BRY L oM
1647+ 643+ 18E]+16E;+9E7+6E; + 2E7 + Eg
A, 4,
E € A’l_’
24, +E,+ E, 24,+E\+ E,

0 eVl \eal+E +E
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Table 4. Enumeration of physical constants for crystals of axial symmetry
Group 6 18 12 25 7 19 14 26 1 4 16 9 22 2 5 17 11 23 8 20 15 27 3 21 24
0 GOy Cy Cay Cow Dy Dy Dy Dg € C Cy Gy Cg Cf C§ Cf Cj Ci Dj Di D Di C¢ C:t D}
1 !l 11 11 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1
2 1 1 1 1 0 0 0 0 38 1 1 11 0 0 0 0 0 0 O O 0 2 o0 O
3, 3 (a) 3 2 2 2 3 2 2 2 6 4 2 2 2 6 4 2 2 2 3 2 92 2 4 92 9
4,5 3 2 2 2 3 2 2 2 9 5 3 3 3 9 5 3 3 3 3 2 2 2 5 8 2
6 5 4 3 3 3 2 1 1 18 8 6 4 4 0 0 0 0 0 0 0 0 O0 10 2 1
7 7 5 4 4 6 4 3 327 18 9 7 7 0 0O O O O O O O O 14 2 1
8 (a) 9 6 6 5 9 6 6 65 21 183 7 7 5 21 18 7 7 5 9 6 6 5 13 5 5
8 12 8 7 6 12 8 7 6 36 20 12 10 8 36 20 12 10 8 12 8 7 6 20 8 6
9 15 10 8 7 15 10 8 7 54 28 18 14 12 54 28 18 14 12 15 10 8 7 28 12 7
10 21 14 11 10 21 14 11 10 81 41 27 21 19 81 41 27 21 19 21 14 11 10 41 19 10
11 17 13 10 8 12 8 5 3 63 29 21 15 11 0 O O O O O O O O 34 10 5
12 20 14 12 10 20 14 12 10 56 32 20 16 12 56 32 20 16 12 20 14 12 10 32 12 10
13 39 26 22 17 39 26 22 17 126 68 42 34 24 126 68 42 34 24 39 26 22 17 68 24 17
E 0 0 0 o0 1 1 1 1 1 1 1 11 0 0 0 0 0 0 0 O O O 0 o
0] 1 6 0 0 3 2 2 2 6 4 2 2 2 0 06 0 0 0 0 0 0 0 2 0 0
Table 5. Enumeration of physical constants for crystals of symmetry Sy, and S,

13 10

No. Representation Say 84y S,

1 1 4, 1 1

2 14 B,+E, 0 0

3,3 (a) [(v] 24,+B,+B,+E, 2 2

4,5 Ve 24, + Ay+ B, + B, + 2K, 2 3

6 Vv 24,+24,+ 3B, + B, +5E, 2 4

7 s 34,+34,+4B,+3B,+7E, 3 6

8 (a) v 64,+A;+3B,+ 3B, + 4E, 6 7

8 (V2] 74, +34,+ 5B, +5B,+ 8E, 7 10

9 Vz[ve] 84,+64,+7B,+7B,+ 13K, 8 14

10 s 114, + 104, + 10B, + 10B, + 20E, 11 21

11 V[V 74,4 74,+10B,+ 5B, +17E, 7 14

12 vepe 124, +44,+ 8B, +8B,+ 12E, 12 16

13 (V2] [[V2)2] 224, 4 124,+ 17B, + 17B,+ 29E, 22 34

E € B, 0

0 e[V?] A+ A4,+2B,+E, 1 2

(3) For C% and D properties 2, 6, 7, 11, E and O
change sign on inversion and hence give zero, others as
for the groups C, and D,,.

(4) For Ct: E,=24",

Ck:E,, Eg—>24],
Di:E;, Eg—>A].

Of the 32 crystallographic groups there remain only
84,and S, . These could be treated by the Bhagavantam-
- Suryanarayana method quite easily but for complete-
ness we give the reduced form of the representations for
84, also in Table 5. Those for S, follow by identifying
A, with 4, (and B, with B,).

We have in this way covered all the 32 crystal groups,
and it may be verified that our results confirm in every
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case those of Bhagavantam & Suryanarayana, their
numbering of the groups being given in the above
Tables above the Schoenflies symbol (which we have
slightly modified in some cases). In addition we have
derived the number of constants for a completely iso-
tropic solid or for one having complete axial symmetry.
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